

PVC Cable Trays in a phosphoric acid plant

Site: Jorf Lasfar Complex City: El Jadida Country: Morocco (Africa) Engineering: Jacobs SA Installer: Samsung C&T Owner: Group OCP Maroc Years: 2014-2016

W Harrison

XX

SAMSUNG

SAMSUNG C&T

ELECTRIC

1. The company: OCP (Office Chérifien des Phosphates)

Office Chérifien des Phosphates is the world's leading producer of phosphate rock and phosphoric acid as well as one of the leading global fertilizer players, with more than 90 years of history serving agriculture. OCP Group has access to Morocco's phosphate rock reserves – the largest global reserve base according to USGS. Fully integrated throughout the value chain, the Group's activities range from mining mineral resources to producing high value-added products. With a global footprint and revenues of more than US\$5.5 billion in 2013, the Group has 23,000 employees

and serves every key agricultural market in the world. 3.7 Milliard dollars\$ is a investment of the group in Ethiopia during The visite of king Mohhammed 6 at this contry.

2. The site: Chemical complex of Jorf-Lasfar

To respond to the international market and develop a local phosphate industry, OCP acquired the Safi chemical complex in 1965 and the Jorf Lasfar complex in 1984. These world-class facilities specialize in the production of phosphoric acid and fertilizer derivatives. About half of the production is concentrated then exported as semi-finished products (merchant grade phosphoric acid), while the other half is locally processed into solid fertilizers. Most of these fertilizers are shipped outside of Morocco. The share reserved for local customers is large enough to ensure the local market's total satisfaction.

In conjunction with the completion of this mineral pipeline, OCP Group built a new phosphoric acid production plant fired with the pulp originating from the terminal station. With a capacity of 1,400 tons of P2O5/ day (i.e. 450,000 tons of phosphoric acid per annum), this new unit allows to raise the production capacity of acid while providing greater flexibility of production and clear improvements in yields.

In addition to water and sunlight, plants have a vital need for three components that are essential to their development: nitrogen (N), phosphorous (P), and potassium (K). Arable lands naturally contain these three elements in varying proportions. Before the early 20th century, agriculture production did not call for large inputs of these elements; however, between 1900 and 2000, agricultural production increased by 600 percent.

As a result of this growth, it became necessary to add various amounts of these three elements to most land in order to improve its productivity. Today, between 40 and 60 percent of global food production requires the use of NPK fertilizer. Phosphorous alone represents a quarter of the 170 million tons of consumed nutrients per year.

If global agricultural production does not increase in this decade compared to the prior decade, we may face a global food output shortfall by 2050, when the world's population is anticipated to reach 9.2 billion people and arable land per capita is expected to drop from its current .20 hectares per capita level to .12. Therefore, food

production must increase by 70 percent, or 1.5 percent per year. This would be impossible without the use of chemical fertilizers. Cereal production, for example, will have to grow at an increased pace to serve expected consumption levels, which are currently between 400 and 1,500 daily grams per person worldwide. Industrial fertilizers, particularly phosphate fertilizers, provide an essential means to meet the planet's future dietary needs in a straightforward and effective way.

They are the only way for populations to increase yields per hectare substantially and therefore limit the amount of land devoted to agriculture at the expense of an already strained forest cover.

From 50 million tons at present, demand for fertilizer will increase to around 70^{*} million tons in 2020, an average growth of 2.6 percent per year. Therefore, 2 million additional tons of fertilizer will need to be produced each year.

3. The procuct installed: Basorplast BPE

Models (HxB):

60x100; 60x150; 60x200; 60x300; 100x200; 100x300; 100x400; 100x600. Types: Slotted or solid bottom. Finishes: PVCM1 UV RAL 7035

Characteristics of the tray:

- Non metallic system
- Resistant to UV radiation. Excellent behaviour in outdoor installation.
- Impact Strength: 20J, except 60x100 with 10J
- Minimum temperature: -4 °F
- Maximum temperature: 140 °F
- Non-! ame propagating component
- Without electrical continuity
- Electrical insulating component
- Dielectric Strength 18 +/- 2 kV/mm
- Hight protection inside and outside against corrosive substances
- M1 reaction to "re acc. to UNE 23727
- Glow wire test degree 1760 °F, EN 60695-2-11
- Flammability UL 94-VO, ANSI/UL 94-1995
- Limiting Oxigen Index LOI>50%, EN ISO 4589
- Comply with RoHS directive, 2002/95/CE
- Raw material without silicone

INSTRUCTIONS FOR USE

-For the assembly, two union joints and four M8 Bolt sets are needed for each stretch (8 for H100 models). - Suitable for wet, salty and chemical agresive environments. - To assure good performance under expansions , the increase in temperature must be noted, between the installation and the maximum temperature expected. Depending on the expected growth in the temperature (Δ T) leave a gap (h) between cable trays according to the following table:

ΔT (°F)	h (mm)
68	5
86	7
104	9
122	11

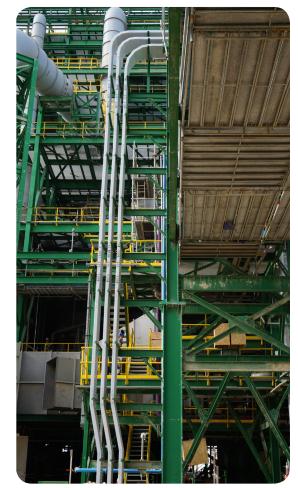
	Safe Working Load - kg/m (lb/ft)									
MODEL	2,4m (8ft)	1,8m (8ft)	1,5m (5ft)							
BPE-60X100	9,7 (6,5)	17,3 (11,6)	25 (16,7)							
BPE-60X150	9,9 (6,6)	17,6 (11,8)	25,3 (17)							
BPE-60X200	28,1 (18,8)	49,9 (33,5)	71,9 (48,3)							
BPE-60X300	55,2 (37)	98,1 (65,9)	141,3 (94,9)							
BPE-100X200	69,6 (46,7)	123,7 (83,1)	178,2 (119,7)							
BPE-100X300	107,2 (72)	190,5 (128)	274,4 (184,4)							
BPE-100X400	178 (119,6)	316,4 (212,6)	455,6 (306,2)							
BPE-100X600	219,7 (147,6)	390,5 (262,4)	562,4 (377,9)							

	Safe Working Load - kg/m (lb/ft)								
MODEL	2,4m (8ft)	1,8m (8ft)	1,5m (5ft)						
BPE-60X100	6,9 (4,6)	12,3 (8,3)	17,8 (11,9)						
BPE-60X150	7 (4,7)	12,5 (8,5)	18 (12,1)						
BPE-60X200	20 (13,4)	35,6 (23,9)	51,3 (34,5)						
BPE-60X300	39,4 (26,4)	70 (47)	100,8 (67,7)						
BPE-100X200	49,7 (33,4)	88,3 (59,3)	127,2 (85,5)						
BPE-100X300	76,5 (51,4)	136 (91,4)	195,9 (131,6)						
BPE-100X400	127 (85,3)	225,9 (151,8)	325,3 (218,6)						
BPE-100X600	156,8 (105,3)	278,8 (187,3)	401,5 (269,8)						

4. Other information about the BPE series

INSTALLATION RECOMMENDATION

- Trays for electrical systems can not be installed under under other types of pipelines with risk of water, vapour or gas loss


- The correct support interval must be 3.3ft

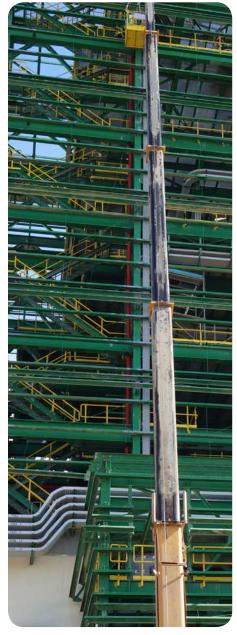
 To guarantee a good ventilation, the installed trays must be a minimum distance of 250mm between them
No grounding needed

TECHNICAL SPECIFICATIONS

- Product: Cable Management System for outdoor
- Raw Material: PVC polymer. UV resistant
- Listing according to UL-568
- Minimum temperature: -20°/ -4F°
- Maximum temperature: 60°/140 F°
- Accessories: Flat bend, inside bend, outside bend & supports (Tee & Cross under demand)
- Insulating
- Covers: For accessories & end covers
- Fittings: Union joints, screws, nuts & derivations
- Material Dimensions:

Height: 2.2/5" & 4" Width: 4", 6", 8"

5. Chemical Resistance according to ISO/TR 10358


Agressive	Concentra-	Temper-	Material		Agressive	Concentra-	Temper-				Agressive	Concentra-	Temper-	- Materi				
Medium	tion	ature	PP	PVC	PE	Medium	tion	ature	PP	PVC	PE	Medium	tion	ature	PP	PVC	P	
fruit wine		20	•	•	•	paraffin oil		20	•	•	•	phosgene*	technically	20	•	•	(
		40						40	•	•	•		pure, gase-					
		60						60	•	0	•		ous					
		80						80						40	<u> </u>	•		
		100						100						60		۲		
fats and oils*,		20	•	•	•	perchlo-	technically	20	•	0	•			80				
vegetale		20	•	•		roethylene	pure	20		ľ	Ŭ			100				
regetate		40	•	•	•	(tetrachlo-						phosphor		20	•	0		
		60	•		-	roethylene)						chloride:*	technically	40				
		80						40				-phosphor- tri-chloride	technically pure	40				
								60				-phosphor-	paro	60	•			
		100						80				penta-		00	ľ			
oleum vapours*	low	20	0	•	0			100				chloride						
vapours		40				perchloric	10%,	20	•	•	•			80				
						acid*	hydrous							100				
		60						40	•	•	•	-phosphoryl		20	ng	ng	r	
		80						60	•	•	•	chloride						
		100						80						40				
olive oil*		20	•	•	•			100						60				
		40	٠	•	•		70%.	20	0	0				80				
		60	٠	•	۲		hydrous		-	-				100				
		80	٠					40	0		•	phosphoric	up to 30%,	20	•	•		
		100						60			0	acid	h drous					
oleic acid	technically	20	•	•	•			80						40	•	•		
	pure	20	-					100						60	•	•		
		40	•	•	•	petroleum	technically	20	•	•	/ • [80	•			
		60	۲	•	•	ether*	pure	20	•					100				
		80	-	-	-		100.0	40	•	6	•		up to 50%,	20	•	•		
		100						60	0	•	0		hydrous					
ovelie eeid*	cold	20	-					80	1	-				40	•	•		
oxalic acid*	saturated,	20	20 •	• •	• •	•			100						60	•	•	
	hydrous						An also families							80				
	-	40	•	•	•	petroleum	technically pure	20	•	•	•			100				
		60	•	•	•		pure	40	0		•		85%,	20	•	•		
		80	-	-	-		-	60	0		•		hydrous					
		100									•			40	•	•		
								80						60	•	٠		
oxygen* up to 2%,	up to 2%, in air	20	۲	•	۰			100						80	•			
		40	0		0	phenol*	up to 10%, hydrous	20	•	•	•			100	•			
		60					nyarous	10	-			phthalic acid*	saturated,	20	•	•		
								40	•	•	•		hydrous	40	-			
		80	L					60	•		•			40	•	•		
		100						80						60	•	0		
	cold	20	۲	•	•			100						80				
	saturated, hydrous						up to 90%,	20	•	•	•			100				
	nyurous	40				X	hydrous					picric acid*	1%, hydrous	20	•	•		
		40	0	•	0			40	•		•			40				
		60	<u> </u>		\square			60	٠		۲			60				
		80						80						80				
		100						100						100			1	

Agressive	Concentra-	Temper-	1	Materia	al		
Medium	tion	ature	PP	PVC	PE		
phosphoric 🖊 acid	up to 30%, hydrous	20	•	•	•		
		40	٠				
		60				Key	
		00	•			•	resistant
			_	1		۲	limited resistant
		80				0	not resistant
						ng	not testet
		100				*	stress cracking
		100				GL	saturated solution
				[0	moisture expansion/softening

6. Some pictures of the installation

6. Some pictures of the installation

6. Some pictures of the installation

